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Further examples

ynt = α + xT
ntβ + µn + υnt

1 Earnings equation in labour economics: ynt measures earnings of
the head of the household, xnt contains a set of variables like
experience, education, union membership, sex, race, etc. Note
that µn is time-invariant and it accounts for any individual
specific effect that is not included in the regression. In this case
we could think of it as the individual’s unobserved ability. The
remainder disturbance υnt varies with individuals and time and
can be thought of as the usual disturbance in the regression.

2 Production function (utilizing data on firms across time): ynt
measures output and xnt measures inputs. The unobservable
firm specific effects will be captured by the µn and we can think
of these as the unobservable entrepreneurial or managerial skills
of the firm’s executives.



Regression
models and
panel data

R. Metulini

The one-way
(error)
component
model

Fixed effects:
Ordinary least
squares

Random
effects:
Generalized
least squares

Estimation
comparison

Two ways
error model

Advanced
arguments

References

The model (i)

• For the observation of individual n at period t we can write the
most simple version of the panel model as:

ynt = α + xT
ntβ + ent (1)

or, equivalently:

ynt = zT
ntγ + ent (2)

• The error component is the sum of two effects: µn, which is the
effect for individual n; υnt is the residual (or idiosyncratic)
effect: ent = µn + υnt
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The model (ii)

• For the whole sample of O = NT observations we can use the
following matrix notation:

y = αj + Xβ + e (3)

or, equivalently:

y = Zγ + e (4)

where j is a NTx1 vector of ones, y is a vector of length NT , X
is a matrix of dimension NTxK , Z is NTx(K + 1), β is a vector
of length K and γ a vector of length K + 1.
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The model (iii)

y =



y11
y12
..

y1T
y21
y22
..

y2T
..

yN1
yN2
..

yNT

 Z =



1 x1
11 x2

11 ... xK
11

1 x1
12 x2

12 ... xK
12

1 .. .. .. ..
1 x1

1T x2
1T ... xK

1T
1 x1

21 x2
21 ... xK

21
1 x1

22 x2
22 ... xK

22
1 .. .. .. ..
1 x1

2T x2
2T ... xK

2T
1 .. .. .. ..
1 x1

N1 x2
N1 ... xK

N1
1 x1

N2 x2
N2 ... xK

N2
1 .. .. .. ..
1 x1

NT x2
NT ... xK

NT


γ =

( α
β1
..

βK

)
e =



e11
e12
..

e1T
e21
e22
..

e2T
..

eN1
eN2
..

eNT
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Transformation
• Panel data models break the total variation of the dependent

variable y in intra- and inter-individual.
• The inter-individual transformation (called between) is obtained

by post multiplying B = IN ⊗ JT /T with y (x).
• For example, for one variable, we will have

(By)T = (ȳ1., ȳ1., ..., ȳ1., ȳ2., ȳ2., ..., ȳ2., ..., ȳN ., ȳN ., ..., ȳN .)
• The intra-individual transformation (called within) is obtained

by post multiplying W = INT − B with y (x)
• For example, for one variable, we will have

(Wy)T = (y11 − ȳ1., y12 − ȳ1., ..., y1T − ȳ1., y21 − ȳ2., y22 −
ȳ2., ..., y2T − ȳ2., ..., yN1 − ȳN ., yN2 − ȳN ., ..., yNT − ȳN .)

• W and B are:
1 symmetric, so BT = B and W T = W
2 idempotent, so WxW = W and BxB = B
3 They decompose a vector, so Bxy + Wxy = y
4 orthogonal, so W T xB = 0
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Random effect’s errors assumptions
• the errors, in matrix form, can be written as

e = (IN ⊗ JT )µ + υ, where µ is a vector of individual effects µn
of length N where each element is repeated T times, υ is a
NT-length vector with idiosyncratic terms.

• The estimated model is defined by estimated parameters
γ̂ = (α̂, β̂T )T and the NT vector of residuals ê = e − Z(γ̂ − γ)

• Assumptions:
1 the expected value of µn and υnt is 0
2 the effects µn are mutually uncorrelated (E(µn, µm) = 0,

∀m 6= n) and homoschedastic (E(µ2
n) = σ2

µ, ∀n = 1, ..., N)
3 the idiosyncratic terms υnt are also mutually uncorrelated

and homoschedastic
4 υnt and µn are uncorrelated each others

• It follows that:
1 the variance E(e2

nt) = σ2
µ + σ2

υ

2 covariance E(entens), s 6= t = σ2
µ

3 covariance E(entemt), n 6= m = 0
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The covariance matrix
• For a given individual n, the variance-covariance matrix for

eT
n = (en1, en2, .., enT ) is

Ωnn = E(eneT
n ) = σ2

υIT + σ2
µJT (5)

• for n 6= m the covariance matrix is 0, given the assumptions of
mutual uncorrelation. It follows that:

• The full (for all individuals) variance-covariance matrix Ω is a
N-block diagonal matrix, each one is in the form of equation 5:

Ω = σ2
υINT + σ2

µ(IN ⊗ JT )

• Ω = σ2
υ(B + W ) + Tσ2

µB = σ2
υW + σ2

1B (the var-covar matrix
can be represented as a linear combination of var terms with
weights the between and the within matrix).1

• A desirable assumption is that both µ and υ are uncorrelated
with x , that is E(µ | x) = 0 and E(υ | x) = 0

1where σ2
1 = σ2

υ + Tσ2
µ
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The covariance matrix - An
example

Let N = 2 and T = 2 (a very simple case)

Ωn=1,n=1 =
(

σ2
υ 0
0 σ2

υ

)
+

(
σ2

µ σ2
µ

σ2
µ σ2

µ

)
=

(
σ2

µ + σ2
υ σ2

µ

σ2
µ σ2

µ + σ2
υ

)

Ω =
(

Ωn=1,n=1 0
0 Ωn=2,n=2

)
We have obtained a 4 x 4 var-covar matrix where elements belonging
to a different individual are zero, and elements belonging to the same

individual at different time are σ2
µ
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OLS estimators (fixed effects)

• The variability in a panel has two sources:
1 between, or inter-individual, which is the variability of panel

variables measured in individual means which is ȳn (or By)
2 within, or intra individual, which is the variability of panel

variables measured in deviation from the means (i.e.,
ynt − ȳn, or Wy)

• OLS method of estimation (the same adopted in the cross
section linear regression) can be applied to 3 models: the raw
data one (pooling model, as it was a cross-section), the within
and the between
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On raw data: The pooling model
• The model to be estimated is y = Zγ + e.2

• OLS is based on minimizing (yT − γT ZT )(y − Zγ) = êT ê
• the OLS estimator is

γ̂OLS = (ZT Z)−1ZT y (6)

while the difference between the vector of true parameters and
estimated parameters is γ̂OLS − γ = (ZT Z)−1ZT e

• About β, β̂OLS = (XT (I − J̄)X)−1XT (I − J̄)y with E(β̂) = β
(unbiased) only if the error e and X are uncorrelated (it may be
not, if unobserved hetrogeneity exists!)

• V (γ̂OLS) = (ZT Z)−1ZT ΩZ(ZT Z)−1 6= σ2(ZT Z)−1

• So, OLS is unbiased and consistent only if e and X are
uncorrelated, but:

1 the expression for the variance is complex
2 OLS is not the BLUE: it exist at least one estimator which

is unbiased and more efficient.
2e here is not the sum of µ and υ
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The between estimator
• Between estimator is an OLS applied to the between

transformed model (it does not allow to detect intra-individual
variation)

By = BZγ + Be = αj + BXβ + Be

• The variables (such as, e.g., gender, religion) in the model that
do not exhibit intra-individual variation are unaffected by this
transformation

• The NT observations become in fact N distinct observations
with individual mean repeated T times each.

• The between estimator reads as:

β̂B = (XT B̄X)−1XT B̄y , (7)

where B̄ = B − J̄ is the matrix that transforms the variable in
its mean into a deviation from the overall mean

• V (β̂B) = σ2
1(XT B̄X)−1



Regression
models and
panel data

R. Metulini

The one-way
(error)
component
model

Fixed effects:
Ordinary least
squares

Random
effects:
Generalized
least squares

Estimation
comparison

Two ways
error model

Advanced
arguments

References

The within estimator

• Within estimator is an OLS applied to the within transformed
model (µ wipes out)

Wy = W (αj + Xβ + e) = WXβ + W υ

• This transformation removes the vector of ones associated to
the intercept α but also the matrix associated to the vectors of
individual effects µn.

• It also removes regressors without intra-individual variation
• Applying OLS to the transformed model we have the within

estimator:
β̂W = (XT WX)−1XT Wy (8)

with standard expression for the variance (no µn)
V (β̂W ) = (XT WX)−1XT W ΩWX(XT WX)−1 = σ2

υ(XT WX)−1
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Least squares dummy variables
(LSDV)

• The model works on raw data and can be written as:

y = Xβ + (IN ⊗ JT )µ + υ

where µ is the N-length vector of parameters (each repeated T
times) to be estimated (µ is now taken into account in a
deterministic way)

• Therefore, there are N + K parameters and the model is feasible
only if N is not too large compare to T

• β coefficients estimated with within or LSDV are the same
(Frisch-Waugh theorem)

• However, LSDV directly estimates the vector of parameters µ
while the within just the βs

• In the within, µn are estimated in a separate step:
α̂n = ȳn. − x̄T

n. β̂, α̂ = ¯̄y − ¯̄xT β̂, µ̂n = α̂n − α̂
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Application

Application in R: Example 2.1 (Croissant, Millo)
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GLS estimator (i)
• The within estimator is a regression on panel data that have

been transformed so that individual effects vanish while LSDV
estimates all the effects, but the risk is of having too many
coefficients to be estimated.

• On the contrary, GLS consider the individual effect as a random
(stochastic) draw from a specific distribution (i.e., normal) and
seeks to estimate the parameters (i.e. the variance) of this
distribution.

• In all cases, the aim is the same: to obtain an efficient estimate
for the slopes (i.e., the β parameters).

• Assume µn ∼ iid(0, σ2
µ), υnt ∼ iid(0, σ2

υ) and the µn are
independent of the υnt .

• The random effects model is an appropriate specification if we
randomly draw N individuals from a large population where N is
large. LSDV would lead to an enormous loss of degrees of
freedom.
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GLS estimator (ii)

• Assuming independence between the error terms µn and υnt , the
covariance matrix is

Ω = E(eeT ) = σ2
µ(IN ⊗ JT ) + σ2

υ(IN ⊗ IT )

• This implies a homoskedastic variance

var(ent) = σ2
µ + σ2

υ, ∀n, t

• Ω is equicorrelated and block-diagonal and it exhibits serial
correlation over time only between the same individual. In fact,

cov(ent , ems) =


σ2

µ + σ2
υ if n = m, s = t

σ2
µ if n = m, s 6= t

0 otherwise
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GLS estimator (iii)
• The GLS estimator reads as:

γ̂GLS = (ZT Ω−1Z)−1(ZT Ω−1y) (9)

• V (γ̂GLS) = (XT Ω−1X)−1 [3]
• Ω is also linear combination of two well-known idempotent and

orthogonal matrices: Ω = σ2
1B + σ2

υW
• Since the dimension of Ω depends on the sample, may be

infeasible to estimate γ̂GLS with eq. 9 (it requires the inversion
of Ω).

• An efficient way is to estimate OLS on pre transformed
data.

• Let C such that CT C = Ω−1, ỹ = Cy , Z̃ = CZ , then
γ̂ = (Z̃T Z̃)−1(Z̃T ỹ)

• C = Ω−0.5 = 1
σ1

B + 1
συ

W , with σ1 and συ that need to be
estimated in advance.

3The constant term has no effect on the variance.
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GLS estimator (iv)

• we can denote φ = συ

σ1
.

It follows that θ = 1 − φ = 1 −
√

σ2
υ

Tσ2
µ+σ2

υ

• As Ω depends on W and B, it may be clear that GLS produces
results in between the within (is equal to the within when σµ

dominates, θ = 1) and the pooled OLS (is equal to the pooled
OLS when συ dominates, φ = 1)
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Application

Application in R: Example 2.2 (Croissant, Millo)
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Comparison of the estimators

• We have four different estimators for the same model (the
one-way error component model): the within and the between
just use one source of variance (respectively, intra and
inter-individual), the pooled OLS and the GLS use both sources.

• If the assumption on null correlation between the errors and
the regressors is in place, all estimators are consistent and
unbiased and then they will give similar results
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Relations between estimators (i)

• OLS and GLS gives intermediate results between the within and
the between estimators, as they use both sources of variance.

• It is in fact demonstrated that β̂GLS can be expressed as a
weighted average of the within and the between

β̂GLS = (XT WX + φ2XT B̄X)−1(XT WX β̂W + φ2XT B̄X β̂B)

• Similarly with β̂OLS , which is the GLS when φ = φ2 = 1

β̂OLS = (XT WX + XT B̄X)−1(XT WX β̂W + XT B̄X β̂B)

• For OLS the weights are exactly the shares of the intra- and
inter-individual variance of the regressors.

• For GLS, the weights depends also on the variance of the errors.
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Relations between estimators (ii)

• Because φ <= 1, GLS will gives less weight to the between
variation, compared to OLS.

• Two special cases can happen:
1 φ → 0: this means that συ is very small compared to σµ.

In this case GLS converges to the within estimator.
2 φ → 1: this means that συ is very large compared to σµ.

In this case GLS converges to the OLS (equal weight to
within and between)
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Fixed vs. random effects
• The individual effects are not fixed or random by nature and

they can be modelled either as random or fixed depending on
1 the purpose of estimation
2 the probabilistic structure (of errors)
3 the correlation between the errors and the regressors

• in micro data, generally random effects are preferred (individuals
are randomly drawn from a population), while in macro analysis,
fixed effects are more popular (because the individual effects
may be of interest per se)

• Assumption of uncorrelated effects (given E(XT υ) = 0). Two
situations:

1 E(XT µ) = 0: individual effects are not correlated with X .
Both models (within and GLS) are consistent, but random
effects (GLS) is more efficient than fixed effects (within)

2 E(XT µ) 6= 0: individual effects are correlated with X .
Only the fixed effects (within) method gives consistent
estimates as, with the within transformation, the individual
effects vanish.
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Application

Application in R: Example 2.3 (Croissant, Millo)
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The two ways (error) model (i)

• The two ways error component is obtained by adding a time
invariant effect λt to the model:

ynt = α + xT
ntβ + ent (10)

ent = µn + λt + υnt (11)

• Assumptions for the two way error model4:
1 λ has zero mean and it is homoschedastic with variance σ2

λ

2 time effects are mutually uncorrelated:
E(λtλs) = 0, ∀t 6= s

3 time effects are uncorrelated with the individual effects and
with the idiosyncratic terms

• The variance-covariance matrix is
Ω = σ2

υINT + σ2
µIN ⊗ JT + σ2

λJN ⊗ IT

4to be added to the assumptions of the one-way, slide 8
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The two ways (error) model (ii)

• The variance-covariance matrix can be also expressed in terms
of a combination of the idempotent and mutually orthogonal
matrices W , Bµ and Bλ:

Ω = σ2
υW + (Tσ2

µ + σ2
υ)Bµ + (Nσ2

λ + σ2
υ)Bλ − σ2

υ J̄

where Bµ = IN ⊗ JT /T , Bλ = JT ⊗ IN/N and J̄ = JNT
NT

• Bµ x y computes the individual means; Bλ x y computes the
time means; J̄ x y computes the overall mean.

• The new within matrix is W = INT − Bµ − Bλ + J̄
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Fixed and random two ways
models (i)

• As for the one way model, the two ways fixed effects model can
be obtained in two different ways:

1 by estimating OLS on the model that includes individual
and time dummies (two ways LSDV)

2 by estimating OLS on the model where all the variables
have been transformed in deviation from time and
individual means (pre multiplied by W , ynt − ȳn. − ȳ.t + ¯̄y )
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Fixed and random two ways
models (ii)

• For the GLS, similarly to what has been proposed in the one
way error model, the variables are pre-multiplied by C = Ω−0.5

because of the problem of the inversion of Ω, and then an OLS
is applied on the transformed data.

• The role of each stochastic component is evaluated by means
of:

1 θµ = 1 − συ√
σ2

υ+Tσ2
µ

(a measure for the importance of

individual variance)
2 θλ = 1 − συ√

σ2
υ+Nσ2

λ

(a measure for the importance of

temporal variance)
3 θ2 = 1 − συ√

σ2
υ+Tσ2

µ+Nσ2
λ

(a measure for the importance of

individual + temporal variance)
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Application

Application in R: Example 2.8 and 2.9 (Croissant, Millo)
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Advanced Arguments

• alternative ways to model the errors in the random effect model
• models to account for endogeneity in the covariates
• models for unbalanced panels (Chapter 3, Croissant & Millo)
• models for count or dichotomous data
• dynamic models accounting for time lagged terms
• models for spatial panels accounting for spatial lagged terms
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Take home messages

• Different ways to account for heterogeneity (wipes out that or
accounting for that)

• The individual and time effects may be modelled as fixed or
random

• Within, Between, pooled OLS or GLS
• GLS and OLS gives intermediate results between within and

between, with two extreme cases
• The use of fixed or random depends on the correlation

assumption among the regressors and the errors
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