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Normal stochastic variables
• We work with stochastic variables, or ”variabili aleatorie” (va)
• When considering a sample of observations (e.g. the vector of

the annual income of n workers, the vector of the annual gross
domestic product for n countries, etc..), statistically, we
consider each value of the vector a realization from a stochastic
variable, so...

• yi (income of the i−th worker) is a realization from the va Y
• Often we assume that Y is a va with a normal distribution, so

Y ∼ N(µ, σ), where E(Y ) = µ and V (Y ) = σ2

• As a matter of fact, the normality assumption in the (linear
regression) model is, however, on the residuals

• Probability density function: f (y) = 1
σ

√
2π

exp− 1
2 ( y−µ

σ )2

• Important: each i − th observation is a realization of a
stochastic variable. With notation y ∼ iid N(0, σ) we mean
that all the elements in the vector y are independent and
presents the same distribution
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Independence between two (or
more) variables

• In linear regression models we work with two or more stochastic
variables, let say, Y and X

• Considering two events A and B, if P(A ∩ B) = P(A)P(B), A
and B are not dependent (A⊥⊥ B). Also P(A | B) = P(A).

• When talking about variables (let say Y and X) with a
distribution, we say that, if E(Y | X) = E(Y ), it follows that
X ⊥⊥ Y .

• Linear independence between two variables can be measured
on the vector of realizations x and y . If there exists scalars
a1, a2 such that a1x + a2y = 0, where 0 is a vector of zeros, X
and Y are dependent. The same can be generalized for more
than two variables (e.g. X1, X2, .., Xp).

• A more elegant way to check for linear independence is to
measure the rank of the design matrix of dimension nxp
X = [X1, X2, ..., Xp ]. If the rank is p, the p variables are each
others independent.
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Covariance and correlations

• A measure used for linear dependence among two variables is
the covariance (and the correlation)

Cor(X , Y ) = 0(uncorrelation) 9 X ⊥⊥ Y

X ⊥⊥ Y → Cor(X , Y ) = 0

• Cov(X , Y ) = E(XY ) − E(X)E(Y ) (for X and Y two stochastic
variables)

• Cov(X , Y ) = 1
n

∑n
i=1(xi − x̄)(yi − ȳ) (for sample realizations

from X and Y )

• Cor(X , Y ) = Cov(X ,Y )√
var(X)var(Y )

, where var(X) =
∑n

i=1
(x1−x̄)2

n

• Warning: Cor and β of the regression model are not comparable
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The regression function (i)

• The most general formulation for the causal relation between
one or a set of independent variables and a dependent variable
can be expressed, deterministically, as:

Y = f (X1, X2, ..., Xp)

where f may be a linear or non linear function.
• If we just consider one independent variable:

Y = f (X)

• If we consider a linear relation, the most simple reads as:

Y = βo + β1 ∗ X
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The regression function (ii)

• Switching to a ”non deterministic” or ”stochastic” formulation,
the causal relation between Y and X may be expressed as:

Y = f (X) + ε

• ε (also called ”disturbance”) is a stochastic variable with
E(ε) = 0 which permits to take into account in the model the
effects of all not considered variables that may have an effect on
Y.

• E.G. let consider a group of bank customers with the same
income (where income is the variable X). It is unlikely that all
of them will have exactly the same savings Y = f (X).
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The regression function (iii)

• The regression function is deterministic on X and ”stochastic”
on ε:

E(Y | X) = E(f (X) + ε) = E(f (X)) + E(ε) = f (X)

• Given a sample of realizations (empirical observations)
{(x1, y1), (x2, y2), ..., (xn, yn)}, it is possible to explicit the
regression function for each of the i−realization of the sample
(generally, of dimension n):

yi = f (xi) + εi , ∀i = 1, 2, ..., n
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Specification (i)

• The linear specification reads as:

yi = β0 + β1 ∗ xi + εi , ∀i = 1, 2, ..., n

with
E(Y | X) = β0 + β1 ∗ x

• The expected value for the dependent variable yi (ŷi) is:

ŷi = β̂0 + β̂1 ∗ xi

where
εi = yi − ŷi

is the sample realization of the stochastic variable ε on the i−th
sample realization.
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Model assumptions (i)

• 1) Linearity on the parameters: The relation between Y and
X is linear
Warning: the following formulations are linear in the
parameters:
yi = β0 + β1 ∗ log(xi) + εi

yi = β0 + β1 ∗ 1
xi

+ εi .
This is not linear in the parameters:
yi = β0 + β2

1 ∗ xi + εi

• 2) Zero mean of the disturbances: E(εi) = 0, ∀i = 1, ..., n
• 3) Homoschedasticity in the disturbances:

Var(εi) = σ2 < −∞, ∀i = 1, ..., n
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Model assumptions (ii)

• 4) Independence between the disturbances:
Cov(εi , εj) = 0, ∀i 6= j

• 5) Normality of the disturbances: εi ∼ N(0, σ2)
The error terms are normally distributed

• 6) X deterministic: The indipendent variable X is known
without errors.
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Ordinary Least Squares (i)

• The most used estimation method for determining an estimate
for parameters β0 and β1 is that of Ordinary Least Squares
(OLS).

• The objective is that of minimize a function, called Q:
• minβ0,β1 Q(β0, β1) =

∑n
i=1(yi − β0 − β1 ∗ xi)2

• The solution of the problem will be:

β̂0 = ȳ − β̂1 ∗ x̄

β̂1 = Cov(x , y)
Var(x) =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
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Ordinary Least Squares (ii)

In summary:
• We denote with β0 e β1 the true (unknown) parameters

expressing the causal relation between X and Y.
• We instead denote with β̂0 and β̂1 the corresponding OLS

estimates based on the sample realizations of the variables X
and Y.
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Properties of OLS estimates (i)

• Linearity: β̂0 and β̂1 are linear combinations of the sample
realizations y1, y2, ..., yn and x1, x2, ..., xn

• Unbiasness:
E(β̂0) = β0

E(β̂1) = β1

• Efficiency: Among all estimators for β made with a linear
combination of all the sample realizations, OLS estimates are
those with smaller variance.
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Properties of OLS estimates (ii)

• Consistency: For sample size n that tends to ∞, the estimates
converge to the value that the estimator is designed to estimate
(with 0 variance).

• Best Linear Unbiased Estimators (BLUE): OLS estimates for
β0 and β1 and those with smaller variance, among all the
possible unbiased estimators.

• Asymptotic normality: OLS estimates for β0 and β1 distribute
normally as n tends to ∞.
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An unbiased estimator for the
variance

• SSε stays for ”Sum of squares of errors” and it is a measure of
deviance of the disturbances.

• SSε

n−2 is the variance

• Var(ε) = SSε

n−2 is an unbiasness estimator for σ2:

E(Var(ε)) = E( SSε

n − 2 ) = σ2

where:

SSε =
n∑

i=1
(yi − ŷi)2
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Variance decomposition

• The linear regression model admits the following variance
decomposition:

Vartotal = Varmodel + Varresidual

or, deviance decomposition:

Devtotal = Devmodel + Devresidual

which can be equivalently expressed as:

SST = SSR + SSε

or:
n∑

i=1
(yi − ȳ)2 =

n∑
i=1

(ŷi − ȳ)2 +
n∑

i=1
(yi − ŷi)2
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The index of linear determination,
R2

• R2 = SSR
SST

= Varmodel
Vartotal

or, equivalently:

R2 = 1 − SSε

SST
= 1 − Varresidual

Vartotal

• R2 admits value in the range [0,1]
• R2 = 0 when the model is completely inadequate to explain

the relation among X and Y, according to the sample data;
R2 = 1 when the model is completely adequate to explain the
relation among X and Y, according to the sample data.
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The multiple linear regression
model

• Let assume the following relation is in place: yi = xiβ + εi

• yi is the i−th sample realization from the stochastic variable Y .
• xi is a 1 x p vector containing the sample realizations of the p

independent variables for the i− realization: xi = (xi,1, ..., xi,p).
• β is the vector of regression coefficients of dimension p x 1.
• εi is the stochastic variable for the disturbances.
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The multiple linear regression
model in matrix form (i)

• Let suppose to have n units with n > p.
• Let Y = (y1, ..., yn)′ be the nx1 vector of the dependent variable

for the n observations.
• Let ε = (ε1, ..., εn)′ be the nx1 vector of the disturbances for

the n observations.
• Let X be the n x p matrix with the realizations of the n

independent variables.
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The multiple linear regression
model in matrix form (ii)

• In a matricial formulation, the multiple linear regression model
reads as:

Y = Xβ + ε

• If the model contains the intercept, the first column of X is a
vector of ones.
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Assumptions of the multiple linear
regression model

1 X is a deterministic matrix with rank p.

2 E(εi) = 0 and Var(εi) = σ2.

3 Cov(εi , εj) = 0, ∀i 6= j.

4 εi ∼ N(0, σ2).

We can summarise hypotesis 2 and 3 with:

E(εεT ) = σ2In

where In is an identity matrix of dimension n x n
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Rank of a matrix (i)

• Let A be a rectangular matrix of dimension m x n.
• From A we can extract a number of squared submatrices, called

”minors”, by removing a row or a column.
• Let ”order” be the number of columns (or rows) of that

submatrix.
• For each minor we can compute the determinant.
• The rank of A is the largest order of the minors such that the

determinant is different from 0.
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Discussion assumption 1

• If rank of X is p, it follows that all the independent variables are
linearly independent.

• In other words, it does not exist an independent variable that
can be written as a linear combination of the others.
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Discussion assumption 2

• From assumption 2 it follows that:

E(yi | xi) = f (xi), ∀i

and:

Var(yi | xi) = σ2, ∀i
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Estimates of β and σ (i)

• Let suppose assumptions 1–3 are in place.
• Let YT = (y1, ..., yn) be the 1 x n vector of the sample

realizations from the v.c. Y.
• We can obtain an estimation of the vector β with OLS:

S =
n∑

i=1
(yi − xiβ)2 = (Y − Xβ)T (Y − Xβ)

• After calculations:

S = YT Y − XT βT Y − YT Xβ + βT XT Xβ =

YT Y − 2βT XT Y + βT XT Xβ
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Estimates of β and σ (ii)

• To obtain β̂ we apply the partial derivates of S in terms of each
βi . In matrix notation:

δS
δβ

= −2XT Y + XT Xβ + XT Xβ = −2XT Y + 2XT Xβ

• By setting the previous equation to 0 and by solving for β we
have that:

XT Y = XT Xβ

β̂(XT X)−1(XT Y)
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Estimates of β and σ (iii)

• Let Ŷ = Xβ̂ the vector of estimated y
• Let ε = Y − Ŷ = Y − Xβ̂ the vector of empirical disturbances.
• The variance of the residuals is:

σ̂2 = εT ε

n − p
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Unbiasness of the estimators

• We reminds that β̂ = (XT X)−1(XT Y)
• Considering the equation for the multiple linear regression

Y = Xβ + ε we have that

β̂ = (XT X)−1(XT (Xβ + ε))

• E(β̂) is:

E(β̂) = E [(XT X)−1(XT (Xβ + ε)] =

E[(XT X)−1(XT X)β] + E [(XT X)−1(XT )ε)] =
β + (XT X)−1(XT )E(ε) = β

• σ̂2 is an unbiased estimator for σ2.
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Coefficients interpretation (i)

• Let suppose to have just two independent variables: X1 and X2.
• The relation among Y and the two independent variables is:

E(Y | X1, X2) = β0 + β1X1 + β2X2

• β1 represents the effect on Y of a unitary variation on X1, by
taking X2 constant.

• Viceversa for β2

• β0 represents the expected value of Y when both X1 and X2 are
0.
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Coefficients interpretation (ii)

• Let suppose X1 varies of an amount equal to δX1 and that X2
remains constant.

• In light of a variation of X1, Y varies as well:

Y + δY = β0 + β1(X1 + δX1) + β2X2

• We obtain that :
δY = β1δX1

from which it follows:
β1 = δY

δX1
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Adjusted R2

• By including one more variable to the regression model, the R2

increases, even when the independent variable is not significant.
• Fo such a reason is preferable to use the adjusted R2 in the

multiple linear regression model:

R2
adj = 1 − n − 1

n − p
SSε

SST

• The correction factor n−1
n−p is always larger than 1, so R2

adj < R2.
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The t-student test

• We want to test the hypothesis that the j − th β coefficient (βj)
is not significantly different from 0, under the assumption σ2 is
unknown.

H0 : βj = 0

H1 : βj 6= 0

•

t = β̂j − βj,0√
σ̂2vjj

where vjj is the j − th element of the matrix (XT X)−1

• t, under the null hypothesis, is distributed as a t-student with
n − p degrees of freedom.

• If empirical t is larger than tables’ t or smaller than minus
tables’ t, we reject the null hypothesis.
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The F statistic (i)

• Let suppose we want to test the following system of hypothesis:{
H0 : β0 = β1 = βp−1 = 0
H1 : βj 6= 0 for at least one j, j = 1, ..., p − 1

• In other words, under the null hypothesis, all the independent
variables (except for the intercept) do not have any significant
effect on Y.
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The F statistic (ii)

• Let SSErestricted the residual sum of squares from the restricted
model (i.e. that with just the intercept).

• SSEunrestricted the residual sum of squares from the unrestricted
model (i.e. that with all the independent variables).

• The F statistics is:

F = (SSErestricted − SSEunrestricted)/(p − 1)
(SSEunrestricted)/(n − p)

• The F statistic (Fobs) must be compared with the theoretical F
(Fth) on the tables. If Fobs > Fth, we reject the null hypothesis.
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