Methodolo

Simulation

Analysis

Discussio

Reference

UNIVERSITÀ DEGLI STUDI DI BERGAMO

SCUOLA ALTI STUDI LUCCA

Assessing the performance of nuclear norm-based matrix completion methods on CO_2 emissions data

Rodolfo Metulini¹, Francesco Biancalani², Giorgio Gnecco², Massimo Riccaboni²

- Department of Economics University of Bergamo
 Laboratory for the Analysis of CompleX Economics Systems (AXES), IMT School for Advanced Studies Lucca
 - SIS 2023 Statistical Learning, Sustainability and Impact Evaluation Università Politecnica delle Marche Ancona

 June 22th, 2023

Metulini Gnecco Biancalani Riccaboni

Framework

Aim

Methodolog

Study

Analysis Analysis

Discussio

Reference

The framework

Carbon Dioxide (CO_2) emissions represent a rising concern in relation to pollution and climate change (Yoro & Daramola, 2020)

Economic systems produce large amounts of CO_2 by the use of fossil energy. Governments are addressing the production to new systems aimed to minimize emissions.

The European Union (EU) implemented a market of emission rights called the **Emissions Trading System** (ETS) that was launched in 2005, aimed at reducing greenhouse gas emissions.

- The idea is to set an annual limit on CO₂ emissions for companies belonging to specific industries.
- Inside this cap, firms are allowed to sell and buy emission rights.

A counterfactual analysis for policy evaluation would permits to quantify the reduction of CO₂ emissions due to ETS

Metulini Gnecco Biancalani Riccaboni

Framework

Aim

Methodolog

Study

Counterfactual Analysis

Discussion

References

The Aim

Due to the ETS policy, untreated CO_2 emissions for the EU countries are unknown in the treatement period.

Matrix Completion (MC) (Hastie et al., 2015) is a supervised statistical learning method to reconstruct a partially incomplete matrix.

We use MC to generate estimates of such untreated CO_2 emissions based on values of the EU countries in the pre-treatment period and on values of extra-EU countries in the treatment period.

To obtain a **robust** counterfactual, we have to study the performance of MC method in reconstructing the original matrix (in absence of treatment).

We develop a simulation study to test the **performance** of Nuclear Norm-based MC methods for panel data.

Metulini Gnecco Biancalani Riccaboni

Framework

Aim

Methodology

Study

Analysis

Discussio

Reference

Nuclear Norm-based MC

Given a matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$, MC works by finding a suitable low-rank approximation of \mathbf{M} , by assuming the model $\mathbf{M} = \mathbf{C}\mathbf{G}^T + \mathbf{E}$, where $\mathbf{C} \in \mathbb{R}^{m \times r}$, $\mathbf{G} \in \mathbb{R}^{n \times r}$, whereas $\mathbf{E} \in \mathbb{R}^{m \times n}$ is a matrix of errors.

Mazumder (2010) optimization problem - MC Baseline (MCB):

$$\underset{\hat{\mathbf{M}} \in \mathbb{R}^{m \times n}}{\operatorname{minimize}} \qquad \left(\frac{1}{|\Omega^{\operatorname{tr}}|} \sum_{(i,j) \in \Omega^{\operatorname{tr}}} \left(M_{i,j} - \hat{M}_{i,j} \right)^2 + \lambda \|\hat{\mathbf{M}}\|_* \right)$$

Athey et al. (2021) methodological advancements (MC Fixed Effects - (MCFE) and MC Time Fixed Effects - (MCTFE)) explicitly includes individual and time fixed effects in the optimization problem:

 $\hat{\Gamma} \mathbf{1}_n^ op$ and $\mathbf{1}_m \hat{\Delta}^ op$ model row (individual) and column (time) fixed effects

Differently from MCB the nuclear norm $\|\hat{\mathbf{L}}\|_*$ is used instead of $\|\hat{\mathbf{M}}\|_*$.

Metulini Gnecco Biancalani Riccaboni

Framewor

Aim

Methodolog Simulation

Study

Analysis

Discussion

Reference

Design of experiment

Freely available database on total CO_2 emissions (in thousand of tons) by country and sector (Corsatea et al, 2019 - https://joint-research-centre. ec.europa.eu/document/download/b572c87b-a2fb-4ab6-af38-ff0451273e9e_en? filenameco2em56.zip), covering years 2000 - 2016 and 42 countries (29 European and 13 non-European).

Years: from 2000 to 2005, in order to avoid possible treatment effects coming from the ETS. **Countries**: 26 (14 EU, 12 extra-EU, we dropped small and extra-EU countries having special agreements with the EU)

We compare the performance of MCB, MCTFE and MCFE, with respect to the **original matrix** (raw) and to a suitably **pre-processed matrix** (I_1 row-normalization by country), using the Mean Absolute Percentage Error (MAPE).

For any specific percentage of **unknown entries** (from 0 to 50%, at intervals of 1), 200 replications have been generated, where the unknown entries (test set) are chosen at random according to the desired percentage.

Computations performed with mcnnm_cv function in MCPanel R package.

Metulini Gnecco Biancalani Riccaboni

ramework

Aim

Methodolog

Simulation Study

Counterfactu Analysis

Discussion

Reference

Results - MAPE

Metulini Gnecco Biancalani Riccaboni

Framewo

Aim

Methodolog

Study

Counterfactual Analysis

Discussion

Reference

Counterfactual Strategy

Training set: Values of the pre-treatment period + 75% of randomly selected extra-EU countries values in the treatment period. Validation set: remaining 25% of extra-EU countries values in 2005–2016. Test set: values of EU countries in the treatment period (2005–2016) (around 50% of missing entries).

MCFE on by country I_1 row-normalized values is applied to estimate the counterfactual CO₂ emissions on the test set.

To draw best and worst case scenario, we represent, for each treated country, $\mathbf{10}^{th}$, $\mathbf{50}^{th}$ and $\mathbf{90}^{th}$ percentiles from $\mathbf{80}$ replications with randomly selected different training and validation sets.

Metulini Gnecco Biancalani Riccaboni

Framewo

Aim

Methodolog

Study

Counterfactual Analysis

Discussion

Reference

Counterfactual Results

Figure: Total CO₂ emissions of treated countries. Actual values (black lines) compared to counterfactual values calculated by MCFE (test set). Medians (black dashed lines), 10th percentiles (red dashed lines), and 90th percentiles (blue dashed lines) considering the 80 MCFE random simulations. Vertical red lines divide the period into pre-treatment and treatment.

Reference

Discussion

In previous works of us we developed MC strategies to:

- 1 Impute missing entries in World Input/Output tables
 - → Metulini, R., Gnecco, G., Biancalani, F., & Riccaboni, M.: Hierarchical clustering and matrix completion for the reconstruction of world input-output tables. AStA Advances in Statistical Analysis, 1-46 (2022)
- 2 Predict CO₂ emissions at sector-year-country level
 - → Biancalani, F., Gnecco, G., Metulini, R., Riccaboni, M. (2023). Matrix Completion for the Prediction of Yearly Country and Industry-Level CO2 Emissions. In "Machine Learning, Optimization, and Data Science". LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham.

In this work:

- We assessed the performance of different versions of nuclear norm-based MC in imputing missing CO₂ emissions. → MCFE and MCTFE performs well (even for large amounts of missing entries) when applied to row-normalized matrices.
- With a robust counterfactual analysis, we are able to quantify the amount of CO₂ emissions saved due to the ETS is in place.

Methodoloj

Study

Analysis

Discussio

References

References

- 1 Athey, S., Bayati, M., Doudchenko, N., Imbens, G., & Khosravi, K.: Matrix completion methods for causal panel data models. *Journal of the American Statistical Association* 116(536), 1716-1730 (2021)
- Corsatea T.D., Lindner S., Arto, I., Roman, M.V., Rueda-Cantuche J.M., Velazquez Afonso A., Amores A.F., Neuwahl F.: World Input-Output Database Environmental Accounts. Update 2000-2016, EUR 29727 EN, Publications Office of the European Union, Luxembourg, (2019)
- 3 Hastie T, Tibshirani R, Wainwright M, Statistical Learning with Sparsity: The Lasso and its Generalizations. *CRC Press*, New York (2015).
- Mazumder R, Hastie T, Tibshirani R,: Spectral Regularization Algorithms for Learning Large Incomplete Matrices. Journal of Machine Learning Research 11, 2287-2322 (2010)
- **⑤** Yoro, K. O., & Daramola, M. O., CO2 emission sources, greenhouse gases, and the global warming effect. In: *Advances in carbon capture*, pp. 3-28. Woodhead Publishing (2020).